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Abstract

The study of randomized algorithms on random structures often reveals phase transi-
tions—sharp changes in algorithmic performance as a continuous parameter is varied. We
investigate this phenomenon in the context of graph coloring on the Erdés—Rényi random
graph model G(n,p). We introduce and analyze the ” Greedy-L” algorithm, which incorpo-
rates a tunable lookahead parameter L to dynamically optimize the vertex coloring order.
This algorithm interpolates between the Randomized Greedy algorithm (L = 1) and the
DSATUR algorithm (L = N). Through extensive simulations, we demonstrate that even a
small lookahead significantly improves performance. Furthermore, we identify sharp algo-
rithmic phase transitions for K-colorability and confirm these transitions using finite-size
scaling. Our results show that increasing the lookahead L shifts the critical threshold to
significantly higher graph densities.

1 Introduction

Graph coloring is a classic problem in combinatorial optimization. Given a graph G = (V, E),
the goal is to assign colors to vertices such that no adjacent vertices share the same color,
minimizing the total number of colors used. As this problem is NP-hard, heuristic approaches
are essential.

We focus on the Erdés—Rényi random graph model, G(n,p), characterized by n vertices
where edges exist independently with probability p. We analyze the graph based on its average
degree, d = (n — 1)p.

A key phenomenon in this area is the phase transition, where the probability of a property
(like being K-colorable) changes abruptly as d crosses a critical threshold. While theoretical
thresholds for the existence of colorings are studied, we focus on algorithmic phase transitions:
the point where a specific algorithm suddenly fails to find a K-coloring.

This paper examines how a tunable level of ”"lookahead” in a greedy algorithm affects its
performance and the location of these phase transitions.

2 The Greedy-L Algorithm

The standard greedy algorithm colors vertices sequentially. Its performance relies heavily on the
ordering of the vertices. A purely random order (Randomized Greedy) often performs poorly.
An optimized approach is to prioritize the most constrained vertices.

Definition: Saturation Degree. The saturation degree of an uncolored vertex is the
number of distinct colors used by its already-colored neighbors.

The DSATUR algorithm always selects the vertex with the highest global saturation de-
gree. We propose the Greedy-L algorithm, which balances randomness and optimization by
introducing a lookahead parameter L.



Algorithm 1 Greedy-L Coloring Algorithm
Require: Graph G = (V, E), Lookahead parameter L
1: Initialize C'olors as empty. Uncolored < V.
2: while Uncolored is not empty do
3: k < min(L, |Uncolored|).
Sample < Randomly select k vertices from Uncolored.
Identify the subset Candidates C Sample with the maximum Saturation Degree.
Unext < Randomly select one vertex from Candidates.
Assign vpert the smallest available positive integer color (First-Fit).
Remove vy, from Uncolored.
: end while

The parameter L controls the scope of the optimization:
e [ =1: A random vertex is chosen. Equivalent to Randomized Greedy.
e [ = N: The globally most saturated vertex is chosen. Equivalent to DSATUR.

e Intermediate L: A localized optimization based on a random sample.

3 Simulation Results and Analysis
We conducted simulations on G(n,p) graphs to evaluate the Greedy-L algorithm.

3.1 Average Performance

We first analyzed the average number of colors used for N = 100, varying d from 1 to 30, and
testing L € {1,5,20,100}. Results are averaged over 30 trials.

Figure 1: Performance of Greedy-L Coloring (N=100)
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Figure 1: Performance comparison of Greedy-L for various L values on G(100, p).



Figure [T] shows that increasing the lookahead L significantly reduces the number of colors
used. Interestingly, we observe diminishing returns. A small lookahead (L = 5) captures a large
portion of the improvement offered by the full DSATUR algorithm (L = 100), suggesting that
localized optimization is highly effective.

3.2 Algorithmic Phase Transitions

Next, we examine the probability that the algorithm can color the graph using a fixed number
of colors, K. We chose K =5 and N = 100, focusing on the critical region d € [6, 14]. Results
are averaged over 100 trials for better resolution.

Figure 2: Algorithmic Phase Transitions (N=100)
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Figure 2: Phase transitions for K = 5 colorability (N = 100). The critical threshold shifts
significantly as L increases.

Figure [2 reveals sharp transitions from near-certain success (P=1) to near-certain failure
(P=0). The critical threshold (where P=0.5) demonstrates the profound impact of the lookahead

parameter:
e L =1 (Random Greedy) threshold: d. ~ 8.25.
e [ = 5 threshold: d. =~ 10.75.
e L =100 (DSATUR) threshold: d. ~ 11.75.

The ability to look ahead, even locally, allows the algorithm to successfully color significantly
denser graphs.

3.3 Finite-Size Scaling

To confirm that these are genuine phase transitions, we must observe finite-size scaling (FSS).
As the system size N increases, the transition curve should become steeper, approaching a step
function in the limit N — co. We analyzed the L = 5 algorithm for N € {50, 100,200}.



Figure 3: Finite-Size Scaling for Greedy-L (L=5)
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Figure 3: Finite-Size Scaling for Greedy-L (L = 5, K = 5). The transition sharpens as N
increases.

Figure [3| clearly demonstrates FSS. The curves for different system sizes intersect near the
critical point (d. =~ 10.75), and the steepness increases with N. This confirms the existence of
a sharp algorithmic threshold for the Greedy-L algorithm.

4 Conclusion

This study introduced the Greedy-L algorithm, a simple yet effective modification to greedy
graph coloring that incorporates a tunable lookahead parameter. By sampling L vertices and
prioritizing the most saturated among them, the algorithm interpolates between Randomized
Greedy and DSATUR.

Our empirical analysis reveals that even a small amount of lookahead (L = 5) provides
substantial performance improvements. We identified sharp algorithmic phase transitions for
K-colorability and demonstrated that increasing L significantly shifts the critical threshold to
higher densities. The confirmation via finite-size scaling validates these emergent behaviors.

This research illustrates how simple modifications to local search heuristics can lead to
complex global phenomena and significant changes in the solvability landscape of random com-
binatorial problems.
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