
Dimensional Expansion Transform (DET):

A Simple Inversion Formula and Conditioning Analysis

with an Engineering Use Case

Geby Jaff
UC Berkeley

Gemini DeepThink GPT5 Pro

October 5, 2025

Abstract

We formalize a simple “dimensional expansion” viewpoint for polynomials: derivatives
step down a dimension and anti-derivatives step up, while integer factors encode expansion
multiplicities. The resulting linear operator on coefficients is the Dimensional Expansion
Transform (DET). We solve the inverse problem (recovering coefficients from expansion
counts) in two exact ways: (i) a standard O(N2) back-substitution and (ii) a closed-form
O(N) adjacent-differences formula

as = Ψs − (s+1)Ψs+1 (ΨN+1 ≡ 0).

We then give a precise conditioning analysis: the forward matrix has

κ∞(U) = (N+1)

N∑
k=0

k!,

which grows on the order of (N+1)! and is not uniformly well-conditioned. We also show
that a factorial rescaling reduces the forward map to a first-sum operator with condition
number growing only linearly in N . A worked cubic example and practical guidance are
included. The mathematics is undergraduate-level (factorials, triangular systems, and basic
norm bounds).

1 Introduction

Let f(x) =
∑N

k=0 akx
k be a real polynomial. Interpret xk as a k-dimensional power object at

side length x. Heuristically, differentiation reduces degree by one and brings down a factor k
(the number of (k−1)-dimensional expansions needed to sweep out xk from xk−1). Integrating
increases degree by one and normalizes by (k+1).

We make this viewpoint algebraic by defining expansion counts at unit side length x = 1
and assembling them into a linear transform on coefficients. The resulting operator is triangular
and thus exactly invertible.

2 Dimensional Expansion Transform (DET)

Let N ∈ N be fixed and write

f(x) =
N∑
k=0

akx
k.

1

Definition 1 (Expansion counts at unit side length). For s ∈ {0, 1, . . . , N} define

Ψs(f) :=
N∑
k=s

ak
k!

s!
. (1)

We refer to Ψs as the s-dimensional expansion count at x = 1, and write Ψ(f) = (Ψ0, . . . ,ΨN)⊤.

Proposition 2 (Upper-triangular form). Let a = (a0, . . . , aN)⊤ and Ψ = (Ψ0, . . . ,ΨN)⊤. Then

Ψ = U a, Us,k =


k!

s!
, k ≥ s,

0, k < s,

so U is upper triangular with Us,s = 1.

Proposition 3 (Linearity and scaling). Ψ is linear: Ψ(f+g) = Ψ(f)+Ψ(g) and Ψ(λf) = λΨ(f).
If f(αx) =

∑
k akα

kxk, then Ψs(f(α·)) =
∑

k≥s akα
k k!

s! .

Proposition 4 (Derivative and anti-derivative at unit length). For a monomial f(x) = a xn we
have

Ψn−1(f) = a
n!

(n− 1)!
= an = f ′(1).

If g(x) =
∫
f(x) dx = a

n+1x
n+1, then for 0 ≤ s ≤ n,

Ψs(g) =
a

n+ 1

(n+ 1)!

s!
= a

n!

s!
= Ψs(f),

while the only new count is Ψn+1(g) =
a

n+1 . By linearity, these statements extend termwise to
polynomials.

3 Inverse problem: recover coefficients from counts

Given Ψ0, . . . ,ΨN , recover a0, . . . , aN .
Define bs := s! Ψs =

∑N
k=s ak k!.

3.1 Two exact inversion formulas

(i) Back-substitution (O(N2)). From aN = bN
N ! and

bk = akk! +
N∑

j=k+1

ajj!,

we obtain

ak =
1

k!

(
bk −

N∑
j=k+1

ajj!
)
, k = N − 1, . . . , 0. (2)

(ii) Adjacent differences (O(N)). Note bs = ass! + bs+1 (with bN+1 := 0), hence

as =
bs − bs+1

s!
= Ψs − (s+1)Ψs+1, ΨN+1 := 0.

We record this as a theorem.

2

Theorem 5 (Linear-time inversion). The coefficients are recovered by the adjacent-differences
rule

as = Ψs − (s+1)Ψs+1 , s = 0, 1, . . . , N, ΨN+1 := 0. (3)

Theorem 6 (Explicit inverse matrix). The inverse U−1 is upper bidiagonal:

(U−1)k,k = 1, (U−1)k,k+1 = −(k+1) for k < N, all other entries 0.

Equivalently, ak = Ψk − (k+1)Ψk+1.

Proof. We verify UU−1 = I. For t > s, we compute the matrix product (UU−1)s,t. Since U−1

is bidiagonal, the only non-zero terms in the sum
∑

j Us,j(U
−1)j,t are for j = t and j = t− 1.

Note that t− 1 ≥ s since t > s.

(UU−1)s,t = Us,t(U
−1)t,t + Us,t−1(U

−1)t−1,t =
t!

s!
· 1 + (t− 1)!

s!
· (−(t)) =

t!− t!

s!
= 0.

For the diagonal entries (UU−1)s,s = Us,s(U
−1)s,s = 1 · 1 = 1. Thus UU−1 = I and reading the

kth row of a = U−1Ψ gives (3).

3.2 Worked example (cubic)

Suppose Ψ3 = 2, Ψ2 = 5, Ψ1 = 15, Ψ0 = 18. Then from (3)

a3 = Ψ3 = 2, a2 = Ψ2−3Ψ3 = 5−6 = −1, a1 = Ψ1−2Ψ2 = 15−10 = 5, a0 = Ψ0−Ψ1 = 18−15 = 3.

Hence f(x) = 2x3 − x2 + 5x+ 3. This matches the back-substitution solution.

4 Conditioning and numerical stability

We analyze conditioning with the ∞-norm ∥ · ∥∞ (maximum absolute row sum).

Proposition 7 (Exact ∞-norms).

∥U∥∞ =
N∑
k=0

k!, ∥U−1∥∞ = N + 1.

Proof. For U (Proposition 2), the row sums are
∑N

k=s k!/s!. This is maximized when s = 0,

giving ∥U∥∞ =
∑N

k=0 k!.
For U−1 (Theorem 6), we examine the absolute row sums. For 0 ≤ k ≤ N − 1, the row

sum is |(U−1)k,k| + |(U−1)k,k+1| = |1| + | − (k + 1)| = k + 2. For k = N , the row sum is
|(U−1)N,N | = |1| = 1.

The maximum absolute row sum is ∥U−1∥∞ = max(max0≤k≤N−1(k + 2), 1). If N = 0, the
maximum is 1. If N ≥ 1, the maximum is attained at k = N − 1, giving (N − 1) + 2 = N + 1.
In both cases, ∥U−1∥∞ = N + 1.

Theorem 8 (Condition number). The ∞-norm condition number is

κ∞(U) = ∥U∥∞∥U−1∥∞ = (N+1)

N∑
k=0

k! .

As N → ∞, κ∞(U) ∼ (N+1)!. Thus the forward map is not uniformly well-conditioned.

Remark 9 (Componentwise sensitivity). Since as = Ψs − (s+1)Ψs+1,

|∆as | ≤ |∆Ψs|+ (s+1)|∆Ψs+1|,

which gives a transparent, per-coefficient error bound linear in s. This complements the global
norm bound involving κ∞(U).

3

4.1 Numerically friendly factorial scaling

Define ck := ak k! and bs := s!Ψs. Then

bs =

N∑
k=s

ck.

Let T be the (N+1)× (N+1) matrix with Ts,k = 1 for k ≥ s and 0 otherwise (upper-triangular
ones). Then b = Tc. T−1 is the first-difference operator:

(T−1)k,k = 1, (T−1)k,k+1 = −1 for k < N.

One checks ∥T∥∞ = N +1. For T−1, the absolute row sums are |1|+ |−1| = 2 for 0 ≤ k ≤ N −1,
and |1| = 1 for k = N .

If N = 0, ∥T−1∥∞ = 1 and κ∞(T) = 1. If N ≥ 1, ∥T−1∥∞ = 2 and

κ∞(T) = 2(N + 1).

Thus, in the factorially scaled variables (b, c), the forward map has only linear growth in N ,
isolating the large factorials into easily handled rescalings.

5 Engineering use case: reverse-engineering a scaling law

In layer-by-layer manufacturing (e.g. 3D printing), tools may report counts of s-dimensional
sweeps at unit scale. The DET framework gives a minimal, explainable model:

1. Measure Ψ0, . . . ,ΨN at x = 1 (counts of s-dimensional expansions).

2. Recover as by (3) (or by (2)).

3. Use f(x) =
∑N

k=0 akx
k for prediction, f ′(x) for marginal change, and

∫ x
0 f(t) dt for cumula-

tive usage.

When N is unknown, fit several degrees and validate on held-out data. For noisy measurements
or more than N+1 observations, solve a small least-squares problem in (b, c) with b = Tc.

6 Numerical check

For selected N , the exact values

κ∞(U) = (N+1)
N∑
k=0

k!

are (rounded ratios for display):

N κ∞(U) κ∞(U)/(N+1)!

3 40 1.6667
10 44,417,054 1.11274
15 22,425,642,181,024 1.07183
20 53,787,877,376,348,226,594 1.05279

These confirm factorial-order growth with a ratio → 1 as N increases.

4

7 Practical guidance

• Prefer the O(N) formula. Use as = Ψs − (s+1)Ψs+1.

• Rescale for regression. If you fit with noise, work with bs = s!Ψs and ck = akk! so the
forward map is b = Tc with conditioning linear in N .

• Watch for cancellation. If Ψs ≈ (s+1)Ψs+1, then as is small and sensitive by necessity
(the model is nearly indistinguishable in that component).

8 Conclusion

We defined the Dimensional Expansion Transform (DET), gave two exact inversions (including
a linear-time adjacent-differences rule), and established precise conditioning bounds. The
framework is compact (factorials, sums, first differences), explainable, and useful for reverse-
engineering scaling laws from expansion counts in manufacturing contexts.

Appendix: Minimal reproducibility script (optional)

Python 3; verifies UU−1 = I, computes κ∞(U),
and demonstrates the O(N) inversion.

import math

def kappa inf(N):

S = sum(math.factorial(k) for k in range(N+1))

return (N+1)*S

def U inv apply(Psi): # Psi[0..N], Psi[N+1]=0

N=len(Psi)-1

a=[0]*(N+1)

for s in range(N+1):

nextPsi = Psi[s+1] if s+1<=N else 0

a[s]=Psi[s]-(s+1)*nextPsi

return a

for N in (3,10,15,20):

print(N, kappa inf(N))

5

	Introduction
	Dimensional Expansion Transform (DET)
	Inverse problem: recover coefficients from counts
	Two exact inversion formulas
	Worked example (cubic)

	Conditioning and numerical stability
	Numerically friendly factorial scaling

	Engineering use case: reverse-engineering a scaling law
	Numerical check
	Practical guidance
	Conclusion

